Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
2.
HGG Adv ; 3(4): 100132, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36035248

RESUMO

Genetic heterogeneity, reduced penetrance, and variable expressivity, the latter including asymmetric body axis plane presentations, have all been described in families with congenital limb malformations (CLMs). Interfamilial and intrafamilial heterogeneity highlight the complexity of the underlying genetic pathogenesis of these developmental anomalies. Family-based genomics by exome sequencing (ES) and rare variant analyses combined with whole-genome array-based comparative genomic hybridization were implemented to investigate 18 families with limb birth defects. Eleven of 18 (61%) families revealed explanatory variants, including 7 single-nucleotide variant alleles and 3 copy number variants (CNVs), at previously reported "disease trait associated loci": BHLHA9, GLI3, HOXD cluster, HOXD13, NPR2, and WNT10B. Breakpoint junction analyses for all three CNV alleles revealed mutational signatures consistent with microhomology-mediated break-induced replication, a mechanism facilitated by Alu/Alu-mediated rearrangement. Homozygous duplication of BHLHA9 was observed in one Turkish kindred and represents a novel contributory genetic mechanism to Gollop-Wolfgang Complex (MIM: 228250), where triplication of the locus has been reported in one family from Japan (i.e., 4n = 2n + 2n versus 4n = 3n + 1n allelic configurations). Genes acting on limb patterning are sensitive to a gene dosage effect and are often associated with an allelic series. We extend an allele-specific gene dosage model to potentially assist, in an adjuvant way, interpretations of interconnections among an allelic series, clinical severity, and reduced penetrance of the BHLHA9-related CLM spectrum.

3.
J Med Virol ; 94(3): 1009-1019, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34676574

RESUMO

Rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 mutations are significant to control the contagion and spread rate of the virus. We aimed to evaluate the N501Y mutation rate in randomly chosen positive patients with the polymerase chain reaction (PCR). The evaluation and analysis of the data with a retrospective approach in cases with mutations, in terms of public health, will contribute to the literature on the global pandemic that affects our society. Public health authorities will take the necessary precautions and evaluate the current situation. The N501Y mutation was detected in patients with positive Covid-19 PCR test results. The positive samples were examined based on the 6-carboxy-fluorescein (FAM) channel in reverse transcription PCR (RT-PCR) quantitation cycle (Cq) values as low Cq (<25), medium Cq (25-32), and high Cq (32-38) groups. In the study, 2757 (19.7%) of 13 972 cases were detected as mutation suspects and 159 (5.8%) of them were found to have mutations. The ages of the cases with mutations ranged from 1 to 88 years (mean age of 40.99 ± 17.55). 49.7% (n = 79) of the cases with mutations were male, and 50.3% (n = 80) were female. When the RT-PCR-Cq results were examined, it was seen that it varied between 11.3 and 35.03, with an average of 20.75 ± 3.32.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teste de Ácido Nucleico para COVID-19 , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Adulto Jovem
5.
Am J Hum Genet ; 108(11): 2112-2129, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626534

RESUMO

Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.


Assuntos
Mutação com Perda de Função , Síndrome de Noonan/genética , Fenótipo , Proteínas Repressoras/genética , Alelos , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Peixe-Zebra
6.
Am J Hum Genet ; 108(10): 1981-2005, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34582790

RESUMO

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.


Assuntos
Genômica/métodos , Mutação , Transtornos do Neurodesenvolvimento/epidemiologia , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Prevalência , Turquia/epidemiologia , Sequenciamento do Exoma , Adulto Jovem
7.
Am J Hum Genet ; 108(6): 1095-1114, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991472

RESUMO

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFß in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFß growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFß levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.


Assuntos
Colágeno/metabolismo , Cútis Laxa/etiologia , Variação Genética , Proteínas de Ligação a TGF-beta Latente/genética , Adolescente , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Cútis Laxa/patologia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Linhagem , Pele/metabolismo , Pele/patologia , Peixe-Zebra
8.
Genes (Basel) ; 12(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807164

RESUMO

Hereditary disorders of connective tissue (HDCT) compromise a heterogeneous group of diseases caused by pathogenic variants in genes encoding different components of the extracellular matrix and characterized by pleiotropic manifestations, mainly affecting the cutaneous, cardiovascular, and musculoskeletal systems. We report the case of a 9-year-old boy with a discernible connective tissue disorder characterized by cutis laxa (CL) and multiple herniations and caused by biallelic loss-of-function variants in EFEMP1. Hence, we identified EFEMP1 as a novel disease-causing gene in the CL spectrum, differentiating it from other HDCT.


Assuntos
Cútis Laxa/genética , Proteínas da Matriz Extracelular/genética , Mutação com Perda de Função , Criança , Consanguinidade , Diagnóstico Diferencial , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Sequenciamento do Exoma
9.
J Hum Genet ; 66(7): 647-657, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33483584

RESUMO

Marfan syndrome (MFS) is an autosomal dominant genetic condition that mainly affects connective tissue in many parts of the body. Cardinal manifestations involve the ocular, skeletal, and cardiovascular systems. The diagnosis of MFS relies on the revised Ghent criteria, outlined by international expert opinion to facilitate accurate recognition of this syndrome as well as to improve patient management and counseling. However, it may not always be possible to make a definitive diagnosis according to these criteria in each patient and thus molecular confirmation is necessary in subjects with suspected MFS. This debilitating, if not fatal, disorder is caused by mutations in FBN1, which encodes a major constitutive element of extracellular microfibrils. Here, we present a detailed clinical and molecular analysis of 76 Turkish patients with definitive or suspected MFS diagnosed at our center between 2014 and 2019. We were able to identify a total of 51 different FBN1 variants in our cohort, 31 of which have previously been reported in the relevant scientific literature. The remaining 20 variants have not been documented to date. In one patient, we detected a large deletion including the entire FBN1 gene using the array CGH approach. Currently, there are very few studies on the genotype-phenotype correlation of patients with MFS, and no clear genotype-phenotype maps for MFS have been constructed so far, except for some cases. We believe that our findings will make a rich and peculiar contribution to the elusive genotype-phenotype relationship in MFS, especially in this large and populous ethnic group.


Assuntos
Fibrilina-1/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Síndrome de Marfan/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Masculino , Síndrome de Marfan/epidemiologia , Síndrome de Marfan/patologia , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Deleção de Sequência/genética , Turquia/epidemiologia
10.
Eur J Hum Genet ; 29(3): 524-527, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33082526

RESUMO

The RASopathies are a group of clinically and genetically heterogeneous developmental disorders caused by dysregulation of the RAS/MAPK signalling pathway. Variants in several components and regulators of this pathway have been identified as the pathogenetic cause. In 2015, missense variants in A2ML1 were reported in three unrelated families with clinical diagnosis of Noonan syndrome (NS) and a zebrafish model was presented showing heart and craniofacial defects similar to those caused by a NS-associated Shp2 variant. However, a causal role of A2ML1 variants in NS has not been confirmed since. Herein, we report on 15 individuals who underwent screening of RASopathy-associated genes and were found to carry rare variants in A2ML1, including variants previously proposed to be causative for NS. In cases where parental DNA was available, the respective A2ML1 variant was found to be inherited from an unaffected parent. Seven index patients carrying an A2ML1 variant presented with an alternate disease-causing genetic aberration. These findings underscore that current evidence is insufficient to support a causal relation between variants in A2ML1 and NS, questioning the inclusion of A2ML1 screening in diagnostic RASopathy testing.


Assuntos
Mutação , Síndrome de Noonan/genética , Fenótipo , alfa-Macroglobulinas/genética , Testes Genéticos/normas , Humanos , Síndrome de Noonan/patologia
11.
Am J Hum Genet ; 105(1): 132-150, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31230720

RESUMO

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.


Assuntos
Artrogripose/genética , Artrogripose/patologia , Variações do Número de Cópias de DNA , Marcadores Genéticos , Genômica/métodos , Herança Multifatorial/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Conectina/genética , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Mosaicismo , Linhagem , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do Exoma , Adulto Jovem
12.
J Clin Endocrinol Metab ; 104(8): 3049-3067, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042289

RESUMO

CONTEXT: Primary ovarian insufficiency (POI) encompasses a spectrum of premature menopause, including both primary and secondary amenorrhea. For 75% to 90% of individuals with hypergonadotropic hypogonadism presenting as POI, the molecular etiology is unknown. Common etiologies include chromosomal abnormalities, environmental factors, and congenital disorders affecting ovarian development and function, as well as syndromic and nonsyndromic single gene disorders suggesting POI represents a complex trait. OBJECTIVE: To characterize the contribution of known disease genes to POI and identify molecular etiologies and biological underpinnings of POI. DESIGN, SETTING, AND PARTICIPANTS: We applied exome sequencing (ES) and family-based genomics to 42 affected female individuals from 36 unrelated Turkish families, including 31 with reported parental consanguinity. RESULTS: This analysis identified likely damaging, potentially contributing variants and molecular diagnoses in 16 families (44%), including 11 families with likely damaging variants in known genes and five families with predicted deleterious variants in disease genes (IGSF10, MND1, MRPS22, and SOHLH1) not previously associated with POI. Of the 16 families, 2 (13%) had evidence for potentially pathogenic variants at more than one locus. Absence of heterozygosity consistent with identity-by-descent mediated recessive disease burden contributes to molecular diagnosis in 15 of 16 (94%) families. GeneMatcher allowed identification of additional families from diverse genetic backgrounds. CONCLUSIONS: ES analysis of a POI cohort further characterized locus heterogeneity, reaffirmed the association of genes integral to meiotic recombination, demonstrated the likely contribution of genes involved in hypothalamic development, and documented multilocus pathogenic variation suggesting the potential for oligogenic inheritance contributing to the development of POI.


Assuntos
Sequenciamento do Exoma , Insuficiência Ovariana Primária/genética , Proteínas de Ciclo Celular/genética , Estudos de Coortes , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , Frequência do Gene , Humanos , Hipogonadismo/genética , Imunoglobulinas/genética , Proteínas de Manutenção de Minicromossomo/genética , Insuficiência Ovariana Primária/etiologia
13.
PLoS Genet ; 14(8): e1007602, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148830

RESUMO

The clinical spectrum of ciliopathies affecting motile cilia spans impaired mucociliary clearance in the respiratory system, laterality defects including heart malformations, infertility and hydrocephalus. Using linkage analysis and whole exome sequencing, we identified two recessive loss-of-function MNS1 mutations in five individuals from four consanguineous families: 1) a homozygous nonsense mutation p.Arg242* in four males with laterality defects and infertility and 2) a homozygous nonsense mutation p.Gln203* in one female with laterality defects and recurrent respiratory infections additionally carrying homozygous mutations in DNAH5. Consistent with the laterality defects observed in these individuals, we found Mns1 to be expressed in mouse embryonic ventral node. Immunofluorescence analysis further revealed that MNS1 localizes to the axonemes of respiratory cilia as well as sperm flagella in human. In-depth ultrastructural analyses confirmed a subtle outer dynein arm (ODA) defect in the axonemes of respiratory epithelial cells resembling findings reported in Mns1-deficient mice. Ultrastructural analyses in the female carrying combined mutations in MNS1 and DNAH5 indicated a role for MNS1 in the process of ODA docking (ODA-DC) in the distal respiratory axonemes. Furthermore, co-immunoprecipitation and yeast two hybrid analyses demonstrated that MNS1 dimerizes and interacts with the ODA docking complex component CCDC114. Overall, we demonstrate that MNS1 deficiency in humans causes laterality defects (situs inversus) and likely male infertility and that MNS1 plays a role in the ODA-DC assembly.


Assuntos
Códon sem Sentido , Lateralidade Funcional/genética , Homozigoto , Infertilidade Masculina/genética , Proteínas Nucleares/metabolismo , Adolescente , Adulto , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Cílios/ultraestrutura , Feminino , Regulação da Expressão Gênica , Ligação Genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Cauda do Espermatozoide , Sequenciamento do Exoma , Adulto Jovem
14.
Am J Hum Genet ; 102(1): 27-43, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276006

RESUMO

Locus heterogeneity characterizes a variety of skeletal dysplasias often due to interacting or overlapping signaling pathways. Robinow syndrome is a skeletal disorder historically refractory to molecular diagnosis, potentially stemming from substantial genetic heterogeneity. All current known pathogenic variants reside in genes within the noncanonical Wnt signaling pathway including ROR2, WNT5A, and more recently, DVL1 and DVL3. However, ∼70% of autosomal-dominant Robinow syndrome cases remain molecularly unsolved. To investigate this missing heritability, we recruited 21 families with at least one family member clinically diagnosed with Robinow or Robinow-like phenotypes and performed genetic and genomic studies. In total, four families with variants in FZD2 were identified as well as three individuals from two families with biallelic variants in NXN that co-segregate with the phenotype. Importantly, both FZD2 and NXN are relevant protein partners in the WNT5A interactome, supporting their role in skeletal development. In addition to confirming that clustered -1 frameshifting variants in DVL1 and DVL3 are the main contributors to dominant Robinow syndrome, we also found likely pathogenic variants in candidate genes GPC4 and RAC3, both linked to the Wnt signaling pathway. These data support an initial hypothesis that Robinow syndrome results from perturbation of the Wnt/PCP pathway, suggest specific relevant domains of the proteins involved, and reveal key contributors in this signaling cascade during human embryonic development. Contrary to the view that non-allelic genetic heterogeneity hampers gene discovery, this study demonstrates the utility of rare disease genomic studies to parse gene function in human developmental pathways.


Assuntos
Anormalidades Craniofaciais/genética , Nanismo/genética , Heterogeneidade Genética , Deformidades Congênitas dos Membros/genética , Anormalidades Urogenitais/genética , Via de Sinalização Wnt/genética , Adolescente , Adulto , Sequência de Bases , Criança , Pré-Escolar , Segregação de Cromossomos/genética , Anormalidades Craniofaciais/diagnóstico , Diagnóstico Diferencial , Nanismo/diagnóstico , Feminino , Genes Dominantes , Estudos de Associação Genética , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Fenótipo , Anormalidades Urogenitais/diagnóstico
15.
J Matern Fetal Neonatal Med ; 30(8): 938-941, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27193571

RESUMO

Cystic hygroma (CH) is a vascular-lymphatic malformation and can occur either as an isolated finding or as a part of a syndrome. The incidence of CH is about 1:1000-1:6000 births. Ultrasonographic diagnosis of CH is usually obtained in the first trimester, and the lesion can appear in septated or non-septated forms. Increased nuchal translucency and CH have been associated with a wide range of structural and genetic abnormalities. Most of CHs are associated with a number of chromosomal abnormalities especially Trisomy 21, 13, 18 and Turner syndrome. Besides, the associations between CH and non-chromosomal syndromes were also reported and Noonan Syndrome (NS) is one of the leading causes. Approximately 50% of NS cases are caused by mutations in the PTPN11 gene. A novel PTPN11 mutation defined in two separate fetuses with CH and associated with NS phenotype is being reported here.


Assuntos
Hidropisia Fetal/diagnóstico , Hidropisia Fetal/genética , Cariotipagem , Linfangioma Cístico/diagnóstico , Linfangioma Cístico/genética , Primeiro Trimestre da Gravidez , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Aborto Eugênico , Aborto Espontâneo/genética , Adulto , Análise Mutacional de DNA , Feminino , Humanos , Recém-Nascido , Linfangioma Cístico/complicações , Síndrome de Noonan/complicações , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Valor Preditivo dos Testes , Gravidez , Primeiro Trimestre da Gravidez/genética , Diagnóstico Pré-Natal/métodos , Proteína Tirosina Fosfatase não Receptora Tipo 11/análise
16.
Childs Nerv Syst ; 33(5): 853-857, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27975139

RESUMO

PURPOSE: Foramina parietalia permagna is a variable intramembranous ossification defect of the parietal bones. Foramina parietalia permagna have an autosomal dominant inheritance, and it is showed that mutations in chromosome 5 and 11 are causing this anomaly. Enlarged parietal foramina occurs extremely rare. They are usually asymptomatic, but occasional headache, vomiting, pain over unprotected cerebral cortex, and seizures may be experienced by the patients. In the literature, some associated congenital bony defects, soft tissue pathologies, underlying neuronal deficits, and vascular variations have been described. METHODS: We report two cases of foramina parietal permagna with their pedigrees and genetic analysis. RESULTS: In case 1, cytogenetic analysis revealed a mutation of the ALX4 gene and all of the members of the family diagnosed with FPP. MRI revealed inferior vermian cerebellar hypoplasia. Surgery was not considered. In case 2, cytogenetic analysis could not be obtained because of financial reasons. Cranial MRI revealed hypoplastic right transverse sinus and sigmoid sinus, with a persistent parafalcine sinus. Surgery was not considered. CONCLUSION: Despite of its rarity, genetic background and some important associated anomalies make foramina parietalia permagna more than an uncommon insignificant genetic disorder.


Assuntos
Encefalocele/diagnóstico por imagem , Encefalocele/genética , Tomografia Computadorizada por Raios X , Adolescente , Criança , Feminino , Humanos , Masculino , Linhagem
17.
Hum Genet ; 135(12): 1399-1409, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27681385

RESUMO

Intellectual disabilities are genetically heterogeneous and can be associated with congenital anomalies. Using whole-exome sequencing (WES), we identified five different de novo missense variants in the protein phosphatase-1 catalytic subunit beta (PPP1CB) gene in eight unrelated individuals who share an overlapping phenotype of dysmorphic features, macrocephaly, developmental delay or intellectual disability (ID), congenital heart disease, short stature, and skeletal and connective tissue abnormalities. Protein phosphatase-1 (PP1) is a serine/threonine-specific protein phosphatase involved in the dephosphorylation of a variety of proteins. The PPP1CB gene encodes a PP1 subunit that regulates the level of protein phosphorylation. All five altered amino acids we observed are highly conserved among the PP1 subunit family, and all are predicted to disrupt PP1 subunit binding and impair dephosphorylation. Our data suggest that our heterozygous de novo PPP1CB pathogenic variants are associated with syndromic intellectual disability.


Assuntos
Estudos de Associação Genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Proteína Fosfatase 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/fisiopatologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto , Fosforilação/genética
18.
J Ultrasound Med ; 35(10): 2285-91, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27582535

RESUMO

Persistent hyperplastic primary vitreous is a spectrum of congenital ocular abnormalities characterized by leukocoria, microphthalmia, cataracts, extensive intravitreal hemorrhage, persistence of the hyaloid artery, glaucoma, and retinal detachment. It might be isolated or associated with congenital syndromes such as trisomy 13, Walker-Warburg syndrome, and Norrie disease. We present 2 cases of persistent hyperplastic primary vitreous diagnosed by prenatal sonography in the early third trimester. Bilateral hyperechoic lenses and retinal nonattachment were detected in the sonographic examination of the first case, whereas irregular echogenic bands between the lenses and posterior walls of the eyes were prominent in the second case. In both of the cases, ocular findings were accompanied by intracranial findings, including severe hydrocephalus, an abnormal gyral pattern, and cerebellar hypoplasia, suggesting the diagnosis of Walker-Warburg syndrome. We also present a review of the literature regarding the prenatal diagnosis of this malformation.


Assuntos
Vítreo Primário Hiperplásico Persistente/diagnóstico por imagem , Ultrassonografia Pré-Natal , Adulto , Diagnóstico Diferencial , Evolução Fatal , Feminino , Humanos , Recém-Nascido , Masculino , Corpo Vítreo/diagnóstico por imagem , Adulto Jovem
19.
Biochem Med (Zagreb) ; 26(2): 264-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27346974

RESUMO

Congenital analbuminemia is an autosomal recessive disorder, in which albumin, the major blood protein, is present only in a minute amount. The condition is a rare allelic heterogeneous defect, only about seventy cases have been reported worldwide. To date, more than twenty different mutations within the albumin gene have been found to cause the trait. In our continuing study of the molecular genetics of congenital analbuminemia, we report here the clinical and biochemical findings and the mutation analysis of the gene in two Turkish infants. For the molecular analysis, we used our strategy, based on the screening of the gene by single-strand conformation polymorphism, heteroduplex analysis and direct DNA sequencing. The results showed that both patients are homozygous for the deletion of a cytosine residue in exon 5, in a stretch of four cytosines starting from nucleotide position 524 and ending at position 527 (NM_000477.5(ALB):c.527delC). The subsequent frame-shift inserts a stop codon in position 215, markedly reducing the size of the predicted protein product. The parents are both heterozygous for the same mutation, for which we propose the name Erzurum from the city of origin of the family. In conclusion, our results show that in this family congenital analbuminemia is caused by a novel frame-shift/deletion defect, confirm the inheritance of the trait, and contribute to advance our understanding of the molecular basis underlying this condition.


Assuntos
Mutação da Fase de Leitura/genética , Deleção de Sequência/genética , Albumina Sérica/deficiência , Albumina Sérica/genética , Adulto , Feminino , Análise Heteroduplex , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA